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Abstract: Direction-of-arrival (DOA) estimation algorithms in array processing applications have been developed
under time-invariant wavefronts. In most applications this assumption is not realistic due to the nonhomogeneous
propagation medium which can distort the wavefront received by the array. This paper extends the author’s previous
work on signal-to-noise ratio (SNR) estimation, in developing a novel approach for estimating the DOA of a
single narrow-band amplitude-distorted wavefront received karlaitrary antenna array The distorted-amplitude
wavefront is assumed to vary according to the first order autoregressive AR(1) model with unknown coefficients.
An approximate maximume-likelihood-based (ML-based) approach to estimate the DOA parameter is developed
in the high SNR scenario. Compared with the classical ML method that requires computationally prohibitive
multi-dimensional search, the proposed approach obtains the DOA estimate by maximizing a new cost function
with respect to a single DOA parameter derived using Markov property of the AR(1) process. Compact Cramér-
Rao lower bound (CRB) expressions for DOA parameter are derived for different kinds of time-varying fading
amplitudes. High and low SNR approximation expressions for the CRB are also derived, that enable the derivation
of a number of CRB properties. Finally, simulation results show the performance of the proposed estimator and
validate the theoretical analysis.

Key—WordsDirection-of-arrival (DOA) estimation, maximum likelihood (ML), Cramér Rao bound, Time-varying
complex-valued AR(1) model.

1 Introduction are also applications where the antenna array may be
in motion due to the variation in DOA and Doppler

] ) ) ) ) ] ] shift. Examples of such applications include sonar,
Direction-of-arrival (DOA) estimation of multiple sig- radar and underwater communication systems. As a
nals using sensor arrays have been popular in radar, consequence, there are both random amplitude and
sonar and Wireles_s communicati_orjs_for decades _(e.g., phase errors occurring due to the wavefront distor-
[1-4]). Stochastic and deterministic CRBs deriva- {jons. Also, the correlation matrix of the received
tions for the DOA parameter have been investigated gjstorted-wavefront is not full rank. Thus, the high-
repeatedly because the performance of several high- resojution DOA estimation methods are not applica-
resolution DOA estimation methods are known to be ple. The problem of narrowband DOA estimation with
comparable to these bounds under certain mild con- jmperfect coherent (randomly distorted) wavefronts
ditions (e.g., [5], [6]). The majority of DOA esti-  \as studied in [12-15]. However, the developed ap-
mation methods (e.g., [7-9]) generally assume that proaches often require a priori knowledge of the spa-
the waveforms are known. In particular, the prob- jg| coherence matrix [12, 13]. In [12], Paulraj and
lem of estimating the DOA of a single source has ajlath presented a subspace algorithm with known
been extensively studied with time-invariant channel ~qnerence variation. Gershmanal. [14] developed
(e.g., [10,11]). Alow complexity, fastand explicitap- 5 procedure to jointly estimate the spatial coherence
proximate ML algorithm has been developed in [10]. |555 and the DOA'. A robust estimator was proposed
For constant-modulus signal, a ML DOA estimator i [15], based on a reduced statistic obtained from the

was derived in [11], which utilizes the prior knowl-  gpdiagonals of the covariance matrix of the uniform
edge of the signal waveform. However, in many sig- jinear array (ULA) output.

nal processing applications involving propagation me-
dia that are neither homogeneous nor isotropic. There This paper extends the author’'s previous work
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that was developed for SNR estimation [21], in devel-
oping a novel approach for estimating the DOA of a
single narrow-band amplitude-distorted wavefront re-
ceived by an arbitrary antenna array. This paper also
gives detailed proofs of the main results (presented
without justification) in [22] followed by a detailed
discussion and original illustrations. The time-variant
complex-valued amplitude of the wavefront are mod-
eled as an AR(1) process, similar to [21, 23], but the
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fort = 0,...,N—1andk = 1,...,M, where
a(0) = e with 7,.(9) being the DOA-dependent
time needed by the wavefront to travel from the first
to thekth sensorj;(t) € C is the amplitude distor-
tion, and it is assumed to be zero-mean circular com-
plex Gaussian with unknown varianeg andny(t) is

the noise term. Since the size of the sensor array is
relatively small to the propagation distance (far-field
scenario), it is reasonable to assume that the complex-

AR(1) process parameters are assumed unknown. An amplitudes are space-invariant (i/(t) = h(t)) and

approximate ML estimation procedure is derived for
the high-SNR scenario, to simultaneously estimate
both the DOA parameter and the time-variant ampli-

tudes parameters. The estimation procedure requires

only a single-dimensional parameter search with re-
spect to the DOA parameter. A closed-form expres-
sions of the CRB are derived with correlated and un-
correlated time-variant complex-valued channel am-
plitude. This bounds enable the derivation of several
properties that describe the effect of the time-variant
amplitude on DOA estimation.

The rest of this paper is organized as follows.
Section 2 describes the signal model and AR(1) cor-
relation model and formalizes the estimation prob-
lem. In Section 3, the ML estimator is derived for
a high SNR approximation. In Section 4, exact and
approximate closed-form expressions for the CRB of
the DOA parameter alone are derived for fast ampli-
tude fading. Closed-form expressions for the CRBs
associated with slow and uncorrelated amplitude fad-
ing are derived in Section 5. Section 6 derives a va-
riety of properties of the derived bounds. In Section
7, simulation results are presented to illustrate the re-
sults. Finally, section 8 concludes the paper.

The following notations are used throughout the

paper. Matrices and vectors are represented by bold
upper case and bold lower case characters, respec-

tively. I is the identity matrix. Vectors are by de-
fault in column orientation, whilg’, H and % stand

for transpose, conjugate transpose and conjugate, re-

spectively.E(.), Tr(.), |

.|I, and® are the expectation,

trace, norm operators, and Kronecker product, respec-

tively. (A); ; denotes théi, j)th element of the ma-
trix A.

2 Signal Model and problem formu-
lation

Let an arbitrary array ofi/ sensors receive a narrow-
band distorted wavefront from an unknown impinging
angled. Thetth observed samplg,(¢) of thekth sen-
sor in the array can be written as (e.g., [14, 16])

(1)

Yr(t) = hy(t)ar(0) + ng(t),
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time-variant according to a complex-valued AR(1)
model. Hence, in this ideal case, thé x 1 vector
of signals received by the array can be represented as

y(6) ),y ()T
h(t)a(d) +n(t), t=0,...,N —1,2)

wherea(f) % (en®) . ¢m0) is the steering
vector parameterized by the unknown scalar DOA pa-
rameter). We supposda(d)|> = M. The M-variate
additive noise vectorgn(t)} ;! are assumed to be
i.i.d. zero-mean complex circular Gaussian with co-
variance matrixt (n(t)n (t)) = ¢21. The signal-to-

noise ratio (SNR) is defined as<’ %. The ampli-

pr— U%
tudesh(t) are modelled by the complex-valued AR(1)

process as
h(t) = yh(t — 1) + V1 —~e(?), 3)

wheree(t) ~ N(0,07) is the additive driving noise
and v is the AR(1) correlation parameteassumed

to be unknown and defined as the normalized Jakes
correlation at lag one (e.g., [20, 21, 23, 24)) dof
Jo(2m f4T) wherel is the zeroth-order Bessel func-
tion of the first kind andf,7T" is the normalized
Doppler frequency of the correlation channel. The
amplitude at time is constrained to follow a sequence
from a known initial state, sag(0):

t—1
h(t) =7"h(0) + V1 =2 Are(t — k).  (4)
k=0

The correlation ovem signalling intervals is given by
RR(m) = E(h(t)h* (t +m)) = o2,

def

Consequently, the covariance matrix af
(h(0),...,h(N —1))" is a symmetric Toeplitz ma-
trix and can be written as

1 o 2 ooVt

72 1 ¥ ’yxfz

1 -
Ri=oi| T .
AN=1 N-2 N-3 1

®)

1This parameter is also called the coherence loss parameter
[15].
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Note that the matrix (5) becomes a diagonal matrix
for v = 0, and so the channel amplitude becomes an
uncorrelated process and fpe= 1 the channel ampli-
tude is simply a realization of a single random variable
(slowly varying complex amplitude).

Collecting the samples of the received signal to form
a vectory & (y(0)7,...,y(N — 1)T)7 yields the

following model

y = Ah +n, (6)
where A ¥ 1 g a(d) and n o
(n(O)T,...,n(N—l)T)T is a NM x 1 noise

vector with covariance matrix2I. The vectory is
a zero-mean complex Gaussian random vector, with
correlation matrix given by

R, ¥ E(yy?) = AR,AP + 21 (7)

The probability density function (pdf) of is
given by:

1

~ 7N det(R,) € ®

wherea = (6, aX)" is an unknown parameter vector
depending on th@ parameter and, a vector of nui-

def 2 9 T
sance parametets, = (o;,,07,7)" .
The estimation problem can now be formulated as
follows: Given the received signg with pdf in (8),
estimate the parameter of interésn the presence of
a nuisance paramete,,.

Extremely slow fading amplitude can be seen as

—yHjoly’

p(y; @)

a degenerate case of a completely correlated process

h(t), i.e., R(m) = oi. The observation vector for
the slow-fading channel model can be written as

(9)

with covariance matriC,, = o7a(6)a(d)" +o2I and

nuisance parameter veciof'® % (52, o?)T. Subse-
quently, the results for the fast-fading amplitude will
be compared with that of the slow-fading amplitude.

Vsia = ha(f) +n, h ~ N(0,0’%)

3 ML DOA estimator

3.1 Outline of Approach

The direct maximization of the likelihood function
(8) with respect to the unknown parameter dof
(0,7 is a difficult task. The simple approach for
deriving the estimates of the parameter veeids to
concentrate (8) with respect to the nuisance parame-
ters, and to perform a search on the DOA parameter
and the nuisance parameters that cannot be concen-

trated. This approach has been investigated in [18,19], p(xi1|zt, zi-1, . .
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which concentrate the ML estimation problem with
respect to the signal covariance matrix elements and
the noise power. However, due to the particular struc-
ture of the current model (2), such a solution can not
compresses (8) with respect to all nuisance parame-
terg (i.e., o). Thus, this section presents another
approach that exploits the Markov propértyf the
AR(1) process and applying the chain rule for express-
ing the pdf ofy in terms of the product of conditional
pdfs. This section shows also that it is possible to
reduce the optimization problem, under a high SNR
approximation, to aingle-parameter searchith re-
spect to the DOA parametér

The concentration procedure can be performed as

éML
F(0;y)

def
Loy, 0;y)=In(p(y; a)) (10)
= In(NM7) —Indet(R,) — y"R, 'y,

arg max I(0;y),

max L(am 0; Y)7
Qn

whereR, = AR, A" + 521, andRy, is defined in
(5). The next subsection concentrates on the deriva-
tion of F'(0;y) to estimate DOA, and provides explicit
expressions for the ML estimates of the nuisance pa-
rameters under a high SNR approximation.

3.2 Evaluating the conditional PDF

Using the Markov property of the AR(1) process, an
equivalent negative log-likelihood function to (10) is
proved in appendix A and is given by (after dropping
the constant term)

2

L(a, 0;y) = NIn(02Mo2) 4 Nn(1 4+ ~—2)
Moa;
+ (N —1)In(1 —~? ——) (11)
(1 + MZ-% )2
N—1
+y(0)7Cly (04> y(n)"Cy(n),
n=1
_ o} H
wherey(n) = y(n) — MO_%JFU%a(H)a @)y(n —
1), C, o ora(f)al’() + o021 and C of
2 0.2
o} (1 - A}g%ﬂ(’;%) a(f)a'’(9) + o21.

Remark 1 Note that fory = 0, the log-likelihood
function (11) is reduced to the following stochastic

2We were able to reduce the search to a two-dimensional
search ird and~.
%A stochastic process {z;} is markovian if

S @e-k) = p(@esa|we), VE
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ML log-likelihood function associated with the DOA  Result 1 For high SNR environment angd # 1, the
estimation of a single source: joint ML estimates of the parameter vectar that

5 maximize the log-likelihood functidi1) are given by

L(6,,0;y) = Nn(e2XM-Yg2) 4 Nin(1 + 0n2) the following:
Moy, 01, is obtained by the maximizing with respectto
N—-1
+ Y ym'c,lyn). F(0;y) =
n=0 — (VW@ V6 ) + (N = (1l = 43r,)
_def
Here,a,, = (07,02)", and the matri®R;, embedded " 1 1 "
in the covariance matnR can be seen as the covari- +y(0) 52 1 o) + M262 . a(0)a” (0) | y(0)

ance matrix of the signal source. The ML estimates of Nt
the DOA parameter), and nuisance parameters; n Z H G5 (n) (13)
and o2 can be obtained in separalfiéorm as shown ’

in (e.g., [18, 19]) for the general case of multiple sig-

nal sources. wherey( ) = y(n) — HEa(9)al’ (0)y(n - 1) and
def
Note that the maximization of (11) is significantly C= 52 Hi(e)
complicated by the presence of the nuisance parame- 1’ a()a’’(9) and where 62 ,,,,

ter 7. However, since the objective of this section is {vgzﬁh,ML(lf’AquL) _ '
to find a simple method of estimation, a high-SNR ap- ;2 @nd Jaz are the estimates of the nuisance

proximation is restored in the following subsection. parameters given by
. ko, (6
3.3 High-SNR ML estimator ML = —L(), (14)
2ky,,,(6)
Using (42), and for high SNR» is very small),C; ! X 1 1 )
can be approximated as ! Ghvr = N <k3,y(9) + 1_7A2(_’YML]€2,Z/(9)
TMmL
1 1
—1 ~ _HL - H ) + 'YMLkl,y ) (15)
C, 52 1a(0) + Mgafgla(e)a (9) v
~2 _ )i
BecauseC has same structure &S, its inverse can In,ML = Z Ha(a n), (16)
also be approximated as n=0
_ 1 1 where the DOA-dependent coefficieris, (0), | =
1 H ,
C Ha(9) M202(1— ,YZ)a(H)a @),7# L. 1,...,4, are given by

N-1
H for high SNR, Eq. (11 be simplified e 1
ence, for hig , EQ. (11) can be simplified as k1, (0) def — (Z(y(n)Ha(e)a(Q)Hy(n)

L' (atn, 0;y)=N In(c2M=Y2) (N — 1) In(1 — ~?) n=1
+ y(0)" ( ST + M; : (9)aH(9)) y(0) (12) + Y(n—l)Ha(H)a(H)Hy(n—l))),
N—-1
NZ " ko y(0) < % (Z(y(n)Ha(e)a(Q)Hy(n—n
n—1 n=1
H H
where 5(n) “F y(n) — Ba@a @Oy 1), + yin-1)"a@a®)yn).
M, € 1- La(@)a(p) andC = L1i}

a0t ka0 € LSy Ta@)a®)y(n),
i a0)a’ (6). ’ M? nz;)

The following main result proved in appendix ki, (0) def ks, (0) — ki1 4(6).
B, shows that it is possible to reduce the optimiza- '
tion problem, under a high SNR approximation, to a The overall estimation procedure can be summa-
single-parameter search with respect to the DOA pa- rjzed as follows. For each value éfin the search
rameter. domain, the ML estimates of?, v, ando? are given

“The DOA parameter can be obtained by maximizing a func- By (15), (14) and (16), respectively. Substituting the
tion of only the DOA parameter. estimates of the nuisance parameters into (12) yields

E-ISSN: 2224-3488 19 Volume 12, 2016



WSEAS TRANSACTIONS on SIGNAL PROCESSING

(13). The ML estimate of is obtained by maximiz-
ing (13). Thus, for high SNR, the nuisance parameters
are given in closed-form expressions that depend on
the DOA parameter, reducing the search teirgyle-
parameter searcln the DOA parameter only.

Note that the ML approach only requires max-
imizing (13) with respect to a scald&, which can
be efficiently implemented using derivative-free up-
hill search methods such as the Nelder-Mead algo-
rithm® [25].

From (14) and (16), using the high SNR condi-
tion, we get

~ . Cn,l(e)
YML = Cn,g(@)
Noseo (N = 1)M2023o(2m f4T)
— (N-Q)(M?Z,§+Mag)
~  Jo(2rf4T) (17)
62 v 02 (18)
cnn(0) SN Nym)Ta@)a (0)y(n—1) +
y(n— 1)"a e)aH 9) (n)) and co2(0) X
S y(n—1)Ma(@)al (0)y(n - 1).

Similarly, from (15) using (17) and under the
high-SNR approximation, we get after some easy ma-

nipulations Nooo 9

Th L — Ohs
ConsequenthML, o}, p @ndoy, ,,, are consistent

estimators ofy, o}, anda2 respectlvely at high SNR.

A2

4 Exact and approximation forms of
CRB
This section presents various exact and approximate

forms of the CRB for the DOA parameter in fast and
slow time-variant channel amplitude.

4.1 General Expression

Since the data vectgr is zero mean, complex, circu-
lar, and Gaussian with covariance matRy,, which
is dependent on the parameter vecigrthe CRB for
a can be expressed as [26, rel. B.3.25]:

CRB(a) = (I,) ™,

wherel,, is the Fisher information matrix (FIM) given

by
18Ry>, kil=1,... 4.

8al
(19)

LOR

def — y —
(Ry Dy, o, Ry

(Ta), = Tr

>The Nelder-Mead algorithm has already been incorporated in 7

the function “fminsearch” in MATLARR).
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The expression of the CRB for the DOA parameter
alone proved in appendix C, is summarized by the fol-
lowing result.

Result 2 For arbitrary array geometries, the expres-
sion of the CRB for the DOA parameter (i.@), is
decoupled from the nuisance (distortion) parameters
(i.e., o) In the presence of time-variant complex-
valued channel amplitude, and is given by:

NO'}%
—1
Tr <R%L (Rh n %I)

1

CRB(6) = CRBYA(6)

(20)

where CRBPA(0) N;& denotes the data-

aided(DAP CRB derived in [17] for time-invariant
(constant) channel amplitude and wheteis the

purely geometrical fact6r2a’H(0)HL( 02 a’(0) with
def def
I, < T—a(f)a’ (0)/M anda'(6) = %57

Remark 2 It is important to remark that the struc-
ture of the general CRB expressi(®D0) is that of the

CRBP* increased by a factor Noj

—1

Tr R2 (Rh—f—WI) >
which is depends on both SNR aRg.
Remark 3 It is shown in appendix C that the DOA
parameter is decoupled from the nuisance (distortion)
parameters in the FIM. Consequently, the C2B)
remains valid for any type of fading correlation (e.g.,
Jakes’ [20] and AR correlation channel models) when

the amplitude fading process is complex normal and
of zero mean.

4.2 Approximate expressionsfor CRB

To get more insights on the CRB, the following sub-
section gives approximate expressions for the CRB
(20) in the high and low SNR regimes that enable the
derivation of the properties below.

For high and low SNR cases, we have

2 —1
Iny
M
-1
o2 1
M
®In the DA case, the transmitted data symbols are assumed to

be perfectly known.
"The parameter is equal the foIIownng valueswyra =

2MIMZD cos2(6) [resp. auca = ] for uniform lin-
ear [resp. uniform circular] array.

Q

(Rh + R; ! for high SNR

M
— I forlow SNR

n

(Rh +

1\7
4sin2 w/M
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hence, the channel-dependent term of the denomina- 6 CRB properties

tor of Eq. (20) can be approximated as:

o2 \ !
Tr | R? <Rh+M"I>

2 o - M 2

No? for high SNR

L

Consequently, the expressions of the CRB for DOA
alone for high and low SNR cases can be written as:

CRBMh(9) = CRBD*(6) for high SNR(21)
11
low
CRB™v(0) 25 Mo forlow SNR  (22)

where the channel-dependent paramgter given by
J%Tr(R,%). It is important to note that the CRB given

b’f/ (21) is identical to the DA CRB derived in [17]
with time-invariant channel amplitude.

5 Uncorrelated and slowly varying
amplitudes cases

In the special cases of slow-varying amplitudes
(i.e.,y = 1andRy, = ¢7117) and uncorrelated time-
varying amplitudegi.c.,y = 0, andR,, = o31), re-
sult 2 can be extended to the following result

Result 3 The CRB for DOA alone over slow and un-
correlated amplitude fading are giventby

1 /1|1 1
—(=|-4+=—] )23

N (a LjLMNp?D( )

1 /11 1
—(=|-+==|). (24

N (a [erMpzD 9
Note that the bound (24) is the conventional stochas-
tic CRB for DOA alone of a single source derived

in [6] under the circular complex Gaussian distribu-
tion. From (23) and (24), we obtain

CRBSIOW (9)

CRBUncor(e)

CRBY™°r(9) > CRB®°¥(4) for all SNR

CRBUncor(a) ~ CRBSIOW(Q)
~ CRBJ*(#) for high SNR(25)
CRBUncor(g) ~ NCRBSIOW(H)
1 1

N—p2Ma for low SNR (26)

8Here the superscrip&low and Uncor of CRB®*¥(p) and
CRBY"" (p) refer slow and uncorrelated channel fading respec-
tively.
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This section presents properties of the boGRIB(6)
which are directly derived from the results of the pre-
vious section. It shows how the CRB depends on the
key parameters such as SNR and channel parameter

v.

Property 1 For high SNR, the CRBs for DOA alone
associated with fast, slow and uncorrected time-
variant channel amplitude are identical to the CRB for
DOA alone associated with time-invariant (constant)
amplitude, which is approximately inversely propor-
tional to SNR and does not depend on the parameter
of the channel.

Proof: The proof follows from Egs. (21) and (25).
Note that for a given correlation model, the CRBs for
DOA alone associated with slowly, rapidly and uncor-
related time-variant amplitudes are identical for high
SNR accordingly to Egs. (25) and (21).

Property 2 For low SNR, the CRBs for DOA alone
associated with fast, slow and uncorrected time-
variant channel amplitude are approximately in-
versely proportional top? (decreasing rapidly with
SNR).

Proof: The proof follows from Egs. (26) and (22).
Note that the parametet in (22) is a monotone de-
creasing function of ;1" as illustrated in Figl.

10°

10°
10

i
107 107
[Ad

Fig.1 The channel-dependent parametdor the AR(1) corre-
lation model versug,T for different values ofV.

It can be seen from this figure thaidecreases rapidly
except for slowly time-varying amplitudes (i.e:,~

1). As the CRB (22) approximately inversely propor-
tional to 3, we obtain the following property

Property 3 For low SNR, the CRB for DOA alone
associated with the fast amplitude fading process is
a monotonically decreasing function of the channel
correlation parametery which varies from uncorre-
lated fading bound~ = 0) to the slow fading bound

(v=1).
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7 Simulation results

The purpose of this section is to illustrate the behav-
ior of the derived CRB for DOA alone and the perfor-
mance of the derived estimator.

Assume that a single narrowband source signal
impinges on a uniform linear array (ULA) dff = 6
sensors separated by a half-wavelength for whieh
(17 el .. ,ei(M_l)G), wheref) = 7 sin «r, with o be-
ing the DOA relative to the normal of array broadside.
The channel is simulated according to a AR(1) cor-
relation model [20, 21, 23] with doppler-time product
of ;7. In our simulations, 1000 Monte Carlo sim-
ulations were run to estimate the mean-square error
(MSE) of the estimates.

We begin with Fig.2, which compares
CRBS°v(9) (23), CRBY™r(9) (24) and the
exact CRB (20) versus SNR for two values of
faT. It can be seen from this figure that all
these bounds are identical except for low SNR

where the fast amplitude fading bound decreasing
from the CRB for uncorrelated amplitude fading

(ile.y = 1) to the CRB for slow amplitude fading
(i.e.;y = 0) as predicted by the Properties 1 and 3.

o’ — — = CRB with uncorrelated amplitude fading (y=0)

— = CRB with slow amplitude fading (y=1)
10° ks CRB with fast amplitude fading
% 107
10:625 72‘0 71‘5 71‘0 -5 é 5‘ 1‘0 15
SNR (dB)

Fig.2 Exact CRB on DOA estimation with time-variant

amplitude fading for two values off,Z7’, CRB®°¥(9) and
CRBY2<°r(9) versus SNR withV = 200.

10"

Exact CRB-fast fading AR1 channel model
~ - = Approx. CRB-fast fading AR1channel model-Low SNR approx

10° — = — Approx. CRB-fast fading AR1channel model-High SNR approx

107 RS

107k

CRB(6)

107k

107

107k

10° L I
-25 -20 -15

Fig.3 Exact CRB and its approximations versus SNR for three
values off;T with N = 200.

Fig.3 exhibits the domain of validity of the low
and high-SNR approximations of the CRB given by
Egs. (22) and (21), respectively. It can be seen that
the domain of validity depends on the valuesfgl’,
where for low SNR the exact CRB equals to its low
approximation bound for a large SNR range except for
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small values off ;7" (i.e., for slowly time-varying am-
plitude fading). At higher SNR, however, the approx-
imate CRB does not depend ¢gil” which is identical

to its exact bound for large SNR range as predicted by
Property 1.

Fig.4 presents the dependence of the CRB for
DOA alone on the time-variant AR(1) correlation
model for low SNR throughout the Doppler-time
product f,;71" for different values ofN. We observe
from this figure that as the Doppler-time product
faT increases, the CRBs remain quite constant up
to Doppler-time product value af.0035, for which
these bounds are identical to the CRB associated to the
slow amplitude fading. We also see that the bounds
increase when the time-Doppler product increases as
predicted by Property 3.

0.06

AR1 channel model

‘ — - — Slow fading channel model

0.05

N=30

Fig.4 ExactCRB(9) for the time-varying AR(1) correlation
model andCRBS'°% () versusf, T with SNR= —15d .

Fig.5 illustrates the Result 1 by comparing the
exact CRB (20) and the minimum mean square er-
ror (MSE) of DOA estimate given by the asymptotic
high-SNR ML estimator for the time-variant ampli-
tude fading versus SNR. From this figure, we observe
a good agreement between the derived CRB and the
estimated MSE for high SNR. On the other hand, the
asymptotic ML estimator still gives a valid estimate
of DOA parameter for small values of and for low
SNR values.

10°

— — — fast-fading channel model (N=50)
fast-fading channel model (N=200)|

° |

4

Fig.5 ExactCRB(0) for thf(eNRE??;we-varying AR(1) correlation
model and estimated MSE(f,,. — 0)? given by the ML esti-
mator versus SNR for two values &f with f;7 = 0.01.

In addition to the properties derived in section
6, Fig.6 presents the behavior of the CRB versus the
number of observatioV. It is seen that the CRB de-

creases agVv increases. Observe that the MSE per-
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formance of the estimate reaches the CRB for a large
range of SNR. This figure shows also that the derived
high-SNR ML estimator continues to provide a good
estimate for low SNR.

107

107

107k

107 1
10°E : B : d
1508

10°

CRB(6)

5‘0 160 1’5‘\‘0 o '2(;3 2‘5(,(\)0 360 35‘0
Fig.6 ExactCRB(f) for the time-varying AR(1) correlation
model and estimated MSE(f,,. — 0)* given by the ML esti-

mator versus\V for two values ofSN R with f;7' = 0.1.

8 Conclusion

400

This paper studies the direction-of-arrival (DOA) es-
timation problem of a single narrow-band source dis-
torted by a time-varying complex AR(1) channel am-
plitude. A high signal-to-noise-ratio maximum like-
lihood (ML) estimator is proposed to simultaneously
estimate the DOA parameter and the unknown param-
eters of the AR(1) amplitude model. The estimator

is compressed into a single-parameter search over the

DOA parameter alone. Closed-form expressions of
the DA CRB for the DOA parameter alone are derived
for fast and slow time-varying channel, respectively.
As a special case, the CRB under uncorrelated time-
varying channel is also derived. Approximate analyt-
ical expressions for the CRB of the DOA alone over
low and high SNR are derived. Some properties that
highlight how the bound depends on key parameters
such as SNR and time-Doppler product are proved.
These properties show that the CRB for DOA alone
is insensitive to the channel-dependent time-Doppler
product for high SNR. Numerical simulation shows

that the proposed estimator reaches the CRB for a

large range of SNR.
A Proof of Eq. (11)

Under the AR(1) channel amplitude model (3), the
M x 1 array observation vector is described by the

following state-space equations:
y(n) = h(n)a(0) + n(n),

h(n) Yh(n —1) + V1 —~2e(n),

wheree(n) ~ N(0,07). Insertingh(n) in (27), we
get

(27)

Habti Abeida

where we have usetl(n — 1)a(f) = y(n — 1) —

n(n — 1). Itis clear from (28) that the dependence of
T

y(n) onits historyy (™ = (y(O)T, yn=1T

for the AR(1) model, is limited to dependence on the

previous samplg(n — 1) alone

py(m)ly™;a) = ply(n)ly(n — 1);@),  (29)
By definition, the normal vectorsn(n) and
e(n) are independent of y(n—1), and
p(y(n—1)ly(n —1);x) is a constant.  Hence,

from (28), to derive the conditional distribution
p(y(n)|ly(n —1); ), we only need to derive the
conditional distributionp(n(n — 1)ly(n —1); o).
Letv, be a complex vector defined as

v & (v ")’

Clearly, v, is zero-mean complex Gaussian vector
with covariance matrix given by
)
def o

whereC,, = s2a(f)a’ (0) + o21. Applying the well
known Bayes rule equality, the conditional distribu-
tion p(n(n)|y(n); ) can be obtained as

(30)

def

2
C, = E(Vyvf) = ( Cy UnI

2 2
oI o071

p(n(n),y(n); o)

n(n)ly(n);a) = , 31
pa(ly(n):a) = PRSI ()
where

1 He—1

. - = L y()TCyy(n)

. 1 7VHC;1V
p(n(n),y(n); a) Wet(cv)e v Y.
Thus,

p(n(n)ly(n);a) = (32)
1 —(ECy v, —y(n) T Cy ly(n)

7™ det(Cy 1) det(C,)

Using matrix inversion lemma [27], the inverse of the
matrix C,, can be expressed as

I -1

O I ‘

(2 9)]

Using (33) and (30), and after some mathematical ma-
nipulations, we obtain

o

-2
o, 1

(Cy - UrQLI)_l
(0]

y(n) =vh(n = a(0)+v/1 - 12a(@)e(n)+n(n) v;'C.'v, —yn)"C, y(n)=(n(n) — 07.C, y(n))"B~" (n(n)

yy(n —1)+ /1 —~2a(f)e(n) + n(n)
yn(n — 1), (28)

E-ISSN: 2224-3488 23

(34)
(35)

7,C; ly(n))

det(C, ") det(C,) det(B),
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whereB © 02(C, — 02I)C; . Thus,n(n)[y(n) is

a complex Gaussian vector with pdf given by

p(n(n)y(n);a) =

def

1 -nmiB C

ny(n)
M det(B) '
(36)
wheren, (n) © 1n(n) — 62C Ly (n). Therefore, the
conditional distribution ofy n%|y (n — 1) is Gaussian
and according to (28) its mean and covariance matrix

are given by

E(y(n)ly(n —1))

Yy (n—1)
YEM@m(n —1)|y(n — 1))

= fya}%C;laaHy(n -1) (37)
2 p(y;
yo; " ;
= —_" a(f 0 —1
Mo? —l—a,%a( JaZ (O)y(n —1),
where

=E(y(n)y(n)"[y(n —1))
— E(y(n)ly(n —1)) (38)
(E(y(n)ly(n—1))"

To derive the covariance matrix (38), we begin
with

Cov(y(n)ly(n — 1))

andy(n)

Therefore, the negative Iog pdf can be expressed as

p(y(0);er) =

Habti Abeida

Therefore, using (40) and (37) the conditional covari-
ance matrix can be expressed as

Cov(y(n)ly(n —1))
E(y(n)y(n)"|y(n — 1))

E(y(n)ly(n — 1))(E(y(n)ly(n — 1))
v’B + 01 (1 — ~4%)aa” + 021

120t al2C; taat + C,

2 2
2 v Moy, H 2

Hence, the pdf off can be expressed as

H ply(n)ly(n — 1); ),
1 ooy
M det(C,)
1 —y(m)C1y(n)

p(y(n)ly(n —1);a) = P TSI

'Yo'h

Wa(H)aH(H)y(n —1).

y(n) —

E(y(n)y(n)ly(n - 1)) =E((ry(n - 1) (after dropping the constant term)
+ V(A =9?)a0)e(n) +n(n) —m(n - 1)> L(ety, 0; y)=In((det(C,))" (det(C))M ) (41)
(1(n= 1)+ VT =7%a(O)e() + () OG0+ 3 5 Sy,

n=1

— mn-1)"yn -1)). (39)
Note thatn(n) is independent of (n — 1), and there-
fore, also ofn(n)|y(n — 1). We also note that(n) is

independent ofi(n — 1), n(n) andy(n — 1), hence,

whereC

72Mo;t

h n

trix C, !, det(C,) anddet(C) can be written, using
matrix determinant and inversion lemmas, as

all the cross terms in (39) except those that involve S 1 H
X C = I- >—aa’’, (42)
bothn(n — 1) andy(n — 1) vanish. Y o2 Mo2 2(] 4 % 2)
After some lengthy but straightforward algebraic Me
manipulations, we obtain det(C,) = det(ciaa +o21)
2
E(y(n)y(n)[y(n - 1)) = /’y(n — y(n - 1)" = MoXM-Dg2(1 4 A; ),
~ 2%y = DB - 1)ly(n - 1)) oM
— ¥’E(n(n - ly(n —1)y(n - 1" det(C) = 1-7?
+ 42E(n(n — Dn(n— 1) ly(n - 1) (1 37i)?
+ (1 =~»aaE(le(n)] )+E(n(n)n(n)H) Hence, the first term in (41) can be simplified as
= Py -1y -1)" —4%02y(n - y(n-1)"C," In((det(Cy))™ (det(C))" ) = NIn(M)
2 2M—1 H 2
B 0,Cy y(n—y(n —1) + Nln(a,%(M_l)U;Zl) + Nn(1+ "2)
+ B +~%00 C, y(n —1)y(n — l)HC;1 Mo,
+ Uh(l— )aa +U,211 + (N— 1) ln(l—’yz%y.
= Yoi(y(n—1)C;a)C; taal y(n — 1)all 1+ 3752)
+ B +o0i(1 —~Haall + 21 (40) Consequently, (11) is proved.

E-ISSN: 2224-3488 24
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B Proof of Result 1

Equating to zero the first derivative df(.) in (12)
with respect too2, o7 and~, we get the following

n?

high-SNR ML equations

aL/a(:?; = N(Af{ v %ym)HHj@y(O)
A G
- ¥ (n)Tx ¥ (n) = 0, (43)
n n=1
aLa(: . aﬁ - Mi 1y(0)"a@)a" (0)y(0)
1 Noro
a MQU;‘;(l —7?) 1 y(n)~a(0)
aH(e) y(n) =0 (44)
OL'(azy) _ 2(N —1)y
vy 1—+2
N-1 )
* Z{—M}’(n —1)"a(g)a’ (6)Cy(n)
k=1
o %ygéa(e)aH(H)y(n -1) (45)
+ S ) a0 09} o

Solving (43) w.r.to2, we obtain the ML estimate of
o2 expressed as function 6fandy as

N-1
2 1 Hypl
OnML = NGI=1) kZ_O y(n) ygy(n). (46)

Next, solving (43) w.r.tz2, we obtain the following
ML estimate ofafL that depends of, v andy

R 1 1
o = v (Bl 1=z (s 0

+ Yk (9))). (47)

Collecting the coefficients for each ordergfthe ML
estimate ofy is given as the solution of the following
third-order polynomial:

2(N — 1oy — kay(0)7* + (2k1,4(0)
— 2(N —1)ap)y — k2,(0) = 0, (48)
which depends of, o7 andy. Substitutingg}, ;.

given by (47) into (48), we obtain after some easy ma-
nipulations the following ML equation ity

def
P(y) = 2ksy(0)7° + koy(0)7* — dksy (0)7°
— 2k (0)? + 2Ky (0)y + kay(0) = 0.
E-ISSN: 2224-3488 25
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Fortunately, this polynomial can be factored as

P(y) = (2kay (0)7 + 2y (0) 7 = 1)* = 0.
Consequently, the ML estimate ¢fis given by
k2,y(9)
2k4,y(9) '

Substituting this solution into (47), we find the ML
estimate obr? given by (15).

ML = —

C Proof of Result 2

To compute the elements of the FIM given by (19),
we need the following partial derivatives of the co-
variance matrixR,, with respect to the unknown pa-
rameters.

R
% = DR,A" + AR, D? (49)
R
L= (50)
OR, 1 y
— = —AR,A 51
80}% O'}QL h (1)
R
—88;/ — ARVAT (52)
WhereRﬁy) def ‘952’1, D & 98 = 1®a/, and where
s def 9a
a — 90

Now, we propose to show that the DOA parameter
is decoupled from the other parameters in FIM (i.e.,

(Ta)g2 = 0, (Ta)gez = 0and(Ia)s, = 0).

Let us defineZ & (MR, + o21)~1. Applying
the well-known matrix inversion lemma (e.g., [27]),
we get

_ 1 =
R, = U—%(I — AR, ZAM), (53)
and hence, we obtain the following equalities
—1 . ind
R,'A = AZ, (54)
A"R'A = MZ. (55)

Using (49) and (50), we obtain

Ry 1Ry
Tr< o6 v Gz
1

Hp -1 Hp-1
= a—%(Tr(DRhA R, 'AR,A"R,")
+ Tr(R,D"R,'AR,A"R,'A))

(ICX)Q,U}QL =

M L
- —2<Tr(RhZRhZAHD)

Oh

+ Tr(ZR,ZR,D A)) , (56)
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where we have used (54) and (55) ahdf A = M.
To simplify the calculation, we need the following
property that can be proved thanks to the properties
of the trace operator (e.g., [27]).
Lemma 1:Let E andF be two symmetric matrices,
andG be a diagonal matrix. Then,

Tr(EFG) Tr((FE)'G)
Tr(FEG).

= Tr(FEGT)

Note :[hatRhZRh is a symmetric matrix because
R, and Z are symmetric matrices. By applying
lemma 1 to the first term of (56) (witk = R,ZR,,,

F = Z, andG = A D), (56) becomes
M H
(Ta)pr2 = E (Tr (ZRhZRh (A"D
+ DPA))) = (57)

where the last equality results from the key equality

dAF A
do

d(afa)l
db

= (aa’ +aMa)l = 0.

=A"D + DA

(58)

Following the
simplified as

(Ia)G,U%

same steps, the terif, )y 2 can be
Tr <%R 108, (59)

0 aR>

Tr(RyZ2AYD + Z°R;, DY A)
Tr(Z*R, (AD + DHA)) =0,
where we have used lemma 1 (Wih= Ry, F = Z2
andG = A”D) and (58).

After some easy manipulations similar to (57) and
(59), the term(I, )g 4 can be simplified as

OR. OR.

I _T YRp-1""YWn—

o (Do o) (o
—MTr(R,ZR\ZA"D

+ ZR\VZR,D"A).

By applying lemma 1 (witlE = R;,, F = Z? and

G = A"D) and (58), we get
(Ia)oqy = Tr(RyZR{VZ(AD + D A)) = 0.

(61)
From (57), (59) and (61), the FIM can be written as
(Ia)ge OF )

FIM:< 0 X<

E-ISSN: 2224-3488 26
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whereX is the FIM block that corresponds to the pa-
rametergo?, v, 02)T.

Hence, we conclude that the DOA parameter is
decoupled from the other parameters in FIM, and

therefore the CRB for DOA parametér, is given
CRB(0) = (Ia); -

Now, we propose to compute the terify )gg. Af-
ter some easy manipulations similar to (57), (59) and
(61), we get

(62)

(Ta)oo = Tr <a;ya—l@§; R ) (63)
= 1 (((a"a)?Z + M(D"R,'D)) (RZRy))

where we have used (49), (54) and (55), and the fact
that AD = (af’a’)I.

Using (53) and after straightforward algebra ma-
nipulations, the first term in (63) can be simplified as

2((afd")?Z + M(D"R;'D)) = Ma

5 -
On

Therefore,

Ma ~
(Ia)oo = —5 Tr(RyZRy).

n

From this last equality and (62), we obtain (20).
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