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Abstract:Direction-of-arrival (DOA) estimation algorithms in array processing applications have been developed
under time-invariant wavefronts. In most applications this assumption is not realistic due to the nonhomogeneous
propagation medium which can distort the wavefront received by the array. This paper extends the author’s previous
work on signal-to-noise ratio (SNR) estimation, in developing a novel approach for estimating the DOA of a
single narrow-band amplitude-distorted wavefront received by anarbitrary antenna array. The distorted-amplitude
wavefront is assumed to vary according to the first order autoregressive AR(1) model with unknown coefficients.
An approximate maximum-likelihood-based (ML-based) approach to estimate the DOA parameter is developed
in the high SNR scenario. Compared with the classical ML method that requires computationally prohibitive
multi-dimensional search, the proposed approach obtains the DOA estimate by maximizing a new cost function
with respect to a single DOA parameter derived using Markov property of the AR(1) process. Compact Cramér-
Rao lower bound (CRB) expressions for DOA parameter are derived for different kinds of time-varying fading
amplitudes. High and low SNR approximation expressions for the CRB are also derived, that enable the derivation
of a number of CRB properties. Finally, simulation results show the performance of the proposed estimator and
validate the theoretical analysis.

Key–Words:Direction-of-arrival (DOA) estimation, maximum likelihood (ML), Cramér Rao bound, Time-varying
complex-valued AR(1) model.

1 Introduction

Direction-of-arrival (DOA) estimation of multiple sig-
nals using sensor arrays have been popular in radar,
sonar and wireless communications for decades (e.g.,
[1–4]). Stochastic and deterministic CRBs deriva-
tions for the DOA parameter have been investigated
repeatedly because the performance of several high-
resolution DOA estimation methods are known to be
comparable to these bounds under certain mild con-
ditions (e.g., [5], [6]). The majority of DOA esti-
mation methods (e.g., [7–9]) generally assume that
the waveforms are known. In particular, the prob-
lem of estimating the DOA of a single source has
been extensively studied with time-invariant channel
(e.g., [10,11]). A low complexity, fast and explicit ap-
proximate ML algorithm has been developed in [10].
For constant-modulus signal, a ML DOA estimator
was derived in [11], which utilizes the prior knowl-
edge of the signal waveform. However, in many sig-
nal processing applications involving propagation me-
dia that are neither homogeneous nor isotropic. There

are also applications where the antenna array may be
in motion due to the variation in DOA and Doppler
shift. Examples of such applications include sonar,
radar and underwater communication systems. As a
consequence, there are both random amplitude and
phase errors occurring due to the wavefront distor-
tions. Also, the correlation matrix of the received
distorted-wavefront is not full rank. Thus, the high-
resolution DOA estimation methods are not applica-
ble. The problem of narrowband DOA estimation with
imperfect coherent (randomly distorted) wavefronts
was studied in [12–15]. However, the developed ap-
proaches often require a priori knowledge of the spa-
tial coherence matrix [12, 13]. In [12], Paulraj and
Kailath presented a subspace algorithm with known
coherence variation. Gershmanet al. [14] developed
a procedure to jointly estimate the spatial coherence
loss and the DOA’s. A robust estimator was proposed
in [15], based on a reduced statistic obtained from the
subdiagonals of the covariance matrix of the uniform
linear array (ULA) output.

This paper extends the author’s previous work
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that was developed for SNR estimation [21], in devel-
oping a novel approach for estimating the DOA of a
single narrow-band amplitude-distorted wavefront re-
ceived by an arbitrary antenna array. This paper also
gives detailed proofs of the main results (presented
without justification) in [22] followed by a detailed
discussion and original illustrations. The time-variant
complex-valued amplitude of the wavefront are mod-
eled as an AR(1) process, similar to [21, 23], but the
AR(1) process parameters are assumed unknown. An
approximate ML estimation procedure is derived for
the high-SNR scenario, to simultaneously estimate
both the DOA parameter and the time-variant ampli-
tudes parameters. The estimation procedure requires
only a single-dimensional parameter search with re-
spect to the DOA parameter. A closed-form expres-
sions of the CRB are derived with correlated and un-
correlated time-variant complex-valued channel am-
plitude. This bounds enable the derivation of several
properties that describe the effect of the time-variant
amplitude on DOA estimation.

The rest of this paper is organized as follows.
Section 2 describes the signal model and AR(1) cor-
relation model and formalizes the estimation prob-
lem. In Section 3, the ML estimator is derived for
a high SNR approximation. In Section 4, exact and
approximate closed-form expressions for the CRB of
the DOA parameter alone are derived for fast ampli-
tude fading. Closed-form expressions for the CRBs
associated with slow and uncorrelated amplitude fad-
ing are derived in Section 5. Section 6 derives a va-
riety of properties of the derived bounds. In Section
7, simulation results are presented to illustrate the re-
sults. Finally, section 8 concludes the paper.

The following notations are used throughout the
paper. Matrices and vectors are represented by bold
upper case and bold lower case characters, respec-
tively. I is the identity matrix. Vectors are by de-
fault in column orientation, whileT , H and∗ stand
for transpose, conjugate transpose and conjugate, re-
spectively.E(.), Tr(.), ‖.‖, and⊗ are the expectation,
trace, norm operators, and Kronecker product, respec-
tively. (A)i,j denotes the(i, j)th element of the ma-
trix A.

2 Signal Model and problem formu-
lation

Let an arbitrary array ofM sensors receive a narrow-
band distorted wavefront from an unknown impinging
angleθ. Thetth observed sampleyk(t) of thekth sen-
sor in the array can be written as (e.g., [14,16])

yk(t) = hk(t)ak(θ) + nk(t), (1)

for t = 0, . . . , N − 1 and k = 1, . . . ,M , where
ak(θ) = eiτk(θ), with τk(θ) being the DOA-dependent
time needed by the wavefront to travel from the first
to thekth sensor,hk(t) ∈ C is the amplitude distor-
tion, and it is assumed to be zero-mean circular com-
plex Gaussian with unknown varianceσ2

h andnk(t) is
the noise term. Since the size of the sensor array is
relatively small to the propagation distance (far-field
scenario), it is reasonable to assume that the complex-
amplitudes are space-invariant (i.e.,hk(t) = h(t)) and
time-variant according to a complex-valued AR(1)
model. Hence, in this ideal case, theM × 1 vector
of signals received by the array can be represented as

y(t)
def
= (y1(t), . . . , yM (t))T

= h(t)a(θ) + n(t), t = 0, . . . , N − 1,(2)

wherea(θ)
def
= (eiτ1(θ), . . . , eiτM (θ)) is the steering

vector parameterized by the unknown scalar DOA pa-
rameterθ. We suppose‖a(θ)‖2 = M . TheM -variate
additive noise vectors{n(t)}N−1

t=0 are assumed to be
i.i.d. zero-mean complex circular Gaussian with co-
variance matrixE(n(t)nH(t)) = σ2

nI. The signal-to-

noise ratio (SNR) is defined asρ
def
=

σ2
h

σ2
n

. The ampli-

tudesh(t) are modelled by the complex-valued AR(1)
process as

h(t) = γh(t− 1) +
√

1− γ2e(t), (3)

wheree(t) ∼ N (0, σ2
h) is the additive driving noise

and γ is the AR(1) correlation parameter1 assumed
to be unknown and defined as the normalized Jakes
correlation at lag one (e.g., [20, 21, 23, 24])γ

def
=

J0(2πfdT ) whereJ0 is the zeroth-order Bessel func-
tion of the first kind andfdT is the normalized
Doppler frequency of the correlation channel. The
amplitude at timet is constrained to follow a sequence
from a known initial state, sayh(0):

h(t) = γth(0) +
√

1− γ2
t−1
∑

k=0

γke(t− k). (4)

The correlation overm signalling intervals is given by

RAR
h (m) = E(h(t)h∗(t+m)) = σ2

hγ
|m|.

Consequently, the covariance matrix ofh
def
=

(h(0), . . . , h(N − 1))T is a symmetric Toeplitz ma-
trix and can be written as

Rh = σ2
h

















1 γ γ2 . . . γN−1

γ 1 γ . . . γN−2

γ2 γ 1 . . . γN−3

...
...

...
. . .

...

γN−1 γN−2 γN−3 . . . 1

















.

(5)

1This parameter is also called the coherence loss parameter
[15].
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Note that the matrix (5) becomes a diagonal matrix
for γ = 0, and so the channel amplitude becomes an
uncorrelated process and forγ = 1 the channel ampli-
tude is simply a realization of a single random variable
(slowly varying complex amplitude).
Collecting the samples of the received signal to form

a vectory
def
= (y(0)T , . . . ,y(N − 1)T )T yields the

following model

y = Ah+ n, (6)

where A
def
= I ⊗ a(θ) and n

def
=

(

n(0)T , . . . ,n(N − 1)T
)T

is a NM × 1 noise
vector with covariance matrixσ2

nI. The vectory is
a zero-mean complex Gaussian random vector, with
correlation matrix given by

Ry
def
= E(yyH) = ARhA

H + σ2
nI. (7)

The probability density function (pdf) ofy is
given by:

p(y;α) =
1

πNM det(Ry)
e−yHR−1

y y, (8)

whereα = (θ,αT
n )

T is an unknown parameter vector
depending on theθ parameter and, a vector of nui-

sance parametersαn
def
= (σ2

n, σ
2
h, γ)

T .
The estimation problem can now be formulated as

follows: Given the received signaly with pdf in (8),
estimate the parameter of interestθ in the presence of
a nuisance parameterαn.

Extremely slow fading amplitude can be seen as
a degenerate case of a completely correlated process
h(t), i.e.,Rh(m) = σ2

h. The observation vector for
the slow-fading channel model can be written as

ysla = ha(θ) + n, h ∼ N (0, σ2
h) (9)

with covariance matrixCy = σ2
ha(θ)a(θ)

H+σ2
nI and

nuisance parameter vectorαsla
n

def
= (σ2

n, σ
2
h)

T . Subse-
quently, the results for the fast-fading amplitude will
be compared with that of the slow-fading amplitude.

3 ML DOA estimator

3.1 Outline of Approach

The direct maximization of the likelihood function
(8) with respect to the unknown parameterα

def
=

(θ,αT
n )

T is a difficult task. The simple approach for
deriving the estimates of the parameter vectorα is to
concentrate (8) with respect to the nuisance parame-
ters, and to perform a search on the DOA parameter
and the nuisance parameters that cannot be concen-
trated. This approach has been investigated in [18,19],

which concentrate the ML estimation problem with
respect to the signal covariance matrix elements and
the noise power. However, due to the particular struc-
ture of the current model (2), such a solution can not
compresses (8) with respect to all nuisance parame-
ters2 (i.e., αn). Thus, this section presents another
approach that exploits the Markov property3 of the
AR(1) process and applying the chain rule for express-
ing the pdf ofy in terms of the product of conditional
pdfs. This section shows also that it is possible to
reduce the optimization problem, under a high SNR
approximation, to asingle-parameter searchwith re-
spect to the DOA parameterθ.
The concentration procedure can be performed as

θ̂ML = arg max
θ

F (θ;y),

F (θ;y) = max
αn

L(αn, θ;y),

L(αn, θ;y)
def
=ln(p(y;α)) (10)

= ln(NMπ)− ln det(Ry)− yHR−1
y y,

whereRy = ARhA
H + σ2

nI, andRh is defined in
(5). The next subsection concentrates on the deriva-
tion ofF (θ;y) to estimate DOA, and provides explicit
expressions for the ML estimates of the nuisance pa-
rameters under a high SNR approximation.

3.2 Evaluating the conditional PDF

Using the Markov property of the AR(1) process, an
equivalent negative log-likelihood function to (10) is
proved in appendix A and is given by (after dropping
the constant term)

L(αn, θ;y) = N ln(σ2(M−1)
n σ2

h) +N ln(1 +
σ2
n

Mσ2
h

)

+ (N − 1) ln(1− γ2
1

(1 + σ2
n

Mσ2
h
)2
) (11)

+ y(0)HC−1
y y(0)+

N−1
∑

n=1

ȳ(n)HC−1ȳ(n),

where ȳ(n)
def
= y(n) −

γσ2
h

Mσ2
h+σ2

n
a(θ)aH(θ)y(n −

1), Cy
def
= σ2

ha(θ)a
H(θ) + σ2

nI and C
def
=

σ2
h

(

1−
γ2Mσ2

h

Mσ2
h+σ2

n

)

a(θ)aH(θ) + σ2
nI.

Remark 1 Note that forγ = 0, the log-likelihood
function (11) is reduced to the following stochastic

2We were able to reduce the search to a two-dimensional
search inθ andγ.

3A stochastic process {xt} is markovian if
p(xt+1|xt, xt−1, . . . , xt−k) = p(xt+1|xt), ∀k
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ML log-likelihood function associated with the DOA
estimation of a single source:

L(ᾱn, θ;y) = N ln(σ2(M−1)
n σ2

h) +N ln(1 +
σ2
n

Mσ2
h

)

+

N−1
∑

n=0

y(n)HC−1
y y(n).

Here,ᾱn
def
= (σ2

h, σ
2
n)

T , and the matrixRh embedded
in the covariance matrixRy can be seen as the covari-
ance matrix of the signal source. The ML estimates of
the DOA parameterθ, and nuisance parametersσ2

h

andσ2
n can be obtained in separable4 form as shown

in (e.g., [18, 19]) for the general case of multiple sig-
nal sources.

Note that the maximization of (11) is significantly
complicated by the presence of the nuisance parame-
ter γ. However, since the objective of this section is
to find a simple method of estimation, a high-SNR ap-
proximation is restored in the following subsection.

3.3 High-SNR ML estimator

Using (42), and for high SNR (σ2
n is very small),C−1

y

can be approximated as

C−1
y ≈

1

σ2
n

Π⊥
a(θ) +

1

M2σ2
h

a(θ)aH(θ).

BecauseC has same structure asCy, its inverse can
also be approximated as

C−1 ≈
1

σ2
n

Π⊥
a(θ)+

1

M2σ2
h(1− γ2)

a(θ)aH(θ), γ 6= 1.

Hence, for high SNR, Eq. (11) can be simplified as

L′(αn, θ;y)=N ln(σ2(M−1)
n σ2

h)+(N − 1) ln(1− γ2)

+ y(0)
H

(

1

σ2
n

Π⊥

a(θ) +
1

M2σ2
h

a(θ)aH (θ)

)

y(0) (12)

+

N−1
∑

n=1

ỹ(n)
H
C̃ỹ(n), γ 6= 1,

where ỹ(n)
def
= y(n) − γ

M
a(θ)aH(θ)y(n − 1),

Π⊥
a(θ)

def
= I − 1

M
a(θ)aH(θ) and C̃

def
= 1

σ2
n
Π⊥

a(θ) +
1

M2σ2
h(1−γ2)

a(θ)aH(θ).

The following main result proved in appendix
B, shows that it is possible to reduce the optimiza-
tion problem, under a high SNR approximation, to a
single-parameter search with respect to the DOA pa-
rameterθ.

4The DOA parameter can be obtained by maximizing a func-
tion of only the DOA parameter.

Result 1 For high SNR environment andγ 6= 1, the
joint ML estimates of the parameter vectorα that
maximize the log-likelihood function(11)are given by
the following:
θ̂ML is obtained by the maximizing with respect toθ

F (θ;y) =

−
(

N ln(σ̂
2(M−1)
n,ML σ̂2

h,ML) + (N − 1) ln(1− γ̂2
ML)

+ y(0)
H

(

1

σ̂2
n,ML

Π⊥

a(θ) +
1

M2σ̂2
h,ML

a(θ)aH(θ)

)

y(0)

+

N−1
∑

n=1

ỹ(n)
H
C̃ỹ(n)

)

, (13)

whereỹ(n)
def
= y(n) − γ̂ML

M
a(θ)aH(θ)y(n− 1) and

C̃
def
= 1

σ̂2
n,ML

Π⊥
a(θ) +

1
M2σ̂2

h,ML(1−γ̂2
ML)

a(θ)aH(θ) and where σ̂2
h,ML,

σ̂2
n,ML and γ̂ML are the estimates of the nuisance

parameters given by

γ̂ML = −
k2,y(θ)

2k4,y(θ)
, (14)

σ̂2
h,ML =

1

N

(

k3,y(θ) +
1

1− γ̂2ML

(−γ̂MLk2,y(θ)

+ γ̂2MLk1,y(θ))
)

, (15)

σ̂2
n,ML =

1

N(M − 1)

N−1
∑

n=0

y(n)HΠ⊥
a(θ)y(n), (16)

where the DOA-dependent coefficientskl,y(θ), l =
1, ..., 4, are given by

k1,y(θ)
def
=

1

M2

(

N−1
∑

n=1

(y(n)Ha(θ)a(θ)Hy(n)

+ y(n − 1)Ha(θ)a(θ)Hy(n − 1))
)

,

k2,y(θ)
def
=

1

M2

(

N−1
∑

n=1

(y(n)Ha(θ)a(θ)Hy(n − 1)

+ y(n − 1)Ha(θ)a(θ)Hy(n))
)

,

k3,y(θ)
def
=

1

M2

N−1
∑

n=0

y(n)Ha(θ)a(θ)Hy(n),

k4,y(θ)
def
= k3,y(θ)− k1,y(θ).

The overall estimation procedure can be summa-
rized as follows. For each value ofθ in the search
domain, the ML estimates ofσ2

h, γ, andσ2
n are given

by (15), (14) and (16), respectively. Substituting the
estimates of the nuisance parameters into (12) yields
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(13). The ML estimate ofθ is obtained by maximiz-
ing (13). Thus, for high SNR, the nuisance parameters
are given in closed-form expressions that depend on
the DOA parameter, reducing the search to asingle-
parameter searchon the DOA parameter only.

Note that the ML approach only requires max-
imizing (13) with respect to a scalarθ, which can
be efficiently implemented using derivative-free up-
hill search methods such as the Nelder-Mead algo-
rithm5 [25].

From (14) and (16), using the high SNR condi-
tion, we get

γ̂ML =
cn,1(θ)

cn,2(θ)

N→∞
−→

(N − 1)M2σ2
hJ0(2πfdT )

(N − 2)(M2σ2
h +Mσ2

n)

≈ J0(2πfdT ) (17)

σ̂2
n,ML

N→∞
−→ σ2

n. (18)

cn,1(θ)
def
=

∑N−1
n=1 (y(n)

H
a(θ)aH(θ)y(n − 1) +

y(n − 1)Ha(θ)aH(θ)y(n)) and cn,2(θ)
def
=

∑N−1
n=2 y(n− 1)Ha(θ)aH(θ)y(n − 1).

Similarly, from (15) using (17) and under the
high-SNR approximation, we get after some easy ma-
nipulations

σ̂2
h,ML

N→∞
−→ σ2

h.
Consequently,̂γML, σ̂2

h,ML andσ̂2
n,ML are consistent

estimators ofγ, σ2
h andσ2

n, respectively at high SNR.

4 Exact and approximation forms of
CRB

This section presents various exact and approximate
forms of the CRB for the DOA parameter in fast and
slow time-variant channel amplitude.

4.1 General Expression

Since the data vectory is zero mean, complex, circu-
lar, and Gaussian with covariance matrixRy, which
is dependent on the parameter vectorα, the CRB for
α can be expressed as [26, rel. B.3.25]:

CRB(α) = (Iα)
−1,

whereIα is the Fisher information matrix (FIM) given
by

(Iα)k,l
def
= Tr

(

R−1
y

∂Ry

∂αk
R−1

y

∂Ry

∂αl

)

, k, l = 1, . . . , 4.

(19)
5The Nelder-Mead algorithm has already been incorporated in

the function “fminsearch” in MATLABR©.

The expression of the CRB for the DOA parameter
alone proved in appendix C, is summarized by the fol-
lowing result.

Result 2 For arbitrary array geometries, the expres-
sion of the CRB for the DOA parameter (i.e.,θ) is
decoupled from the nuisance (distortion) parameters
(i.e., αn) in the presence of time-variant complex-
valued channel amplitude, and is given by:

CRB(θ) = CRBDA
0 (θ)

Nσ2
h

Tr

(

R2
h

(

Rh + σ2
n

M
I
)−1

) ,

(20)

where CRBDA
0 (θ) = 1

Nρ
1
α

denotes the data-

aided(DA)6 CRB derived in [17] for time-invariant
(constant) channel amplitude and whereα is the
purely geometrical factor7 2a′H(θ)Π⊥

a(θ)a
′(θ) with

Π⊥
a(θ)

def
= I− a(θ)aH(θ)/M anda′(θ)

def
= ∂a(θ)

∂θ
.

Remark 2 It is important to remark that the struc-
ture of the general CRB expression(20) is that of the

CRBDA
0 increased by a factor

Nσ2
h

Tr

(

R2
h

(

Rh+
σ2
n

M
I

)

−1
)

which is depends on both SNR andRh.

Remark 3 It is shown in appendix C that the DOA
parameter is decoupled from the nuisance (distortion)
parameters in the FIM. Consequently, the CRB(20)
remains valid for any type of fading correlation (e.g.,
Jakes’ [20] and AR correlation channel models) when
the amplitude fading process is complex normal and
of zero mean.

4.2 Approximate expressions for CRB

To get more insights on the CRB, the following sub-
section gives approximate expressions for the CRB
(20) in the high and low SNR regimes that enable the
derivation of the properties below.
For high and low SNR cases, we have

(

Rh +
σ2
n

M
I

)−1

≈ R−1
h for high SNR

(

Rh +
σ2
n

M
I

)−1

≈
M

σ2
n

I for low SNR,

6In the DA case, the transmitted data symbols are assumed to
be perfectly known.

7The parameterα is equal the following valuesαULA =

π2 M(M−1)
6

cos2(θ) [resp.αUCA = Mπ2

4 sin2 π/M
] for uniform lin-

ear [resp. uniform circular] array.
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hence, the channel-dependent term of the denomina-
tor of Eq. (20) can be approximated as:

Tr

(

R2
h

(

Rh+
σ2
n

M
I

)−1
)

≈ Nσ2
h for high SNR

Tr

(

R2
h

(

Rh+
σ2
n

M
I

)−1
)

≈
M

σ2
n

Tr(R2
h) for low SNR.

Consequently, the expressions of the CRB for DOA
alone for high and low SNR cases can be written as:

CRBhigh(θ) = CRBDA
0 (θ) for high SNR,(21)

CRBlow(θ) =
1

ρ2β

1

Mα
for low SNR, (22)

where the channel-dependent parameterβ is given by
1
σ4
h
Tr(R2

h). It is important to note that the CRB given

by (21) is identical to the DA CRB derived in [17]
with time-invariant channel amplitude.

5 Uncorrelated and slowly varying
amplitudes cases

In the special cases of slow-varying amplitudes
(i.e., γ = 1 andRh = σ2

h11
T ) and uncorrelated time-

varying amplitudes(i.e., γ = 0, andRh = σ2
hI), re-

sult 2 can be extended to the following result

Result 3 The CRB for DOA alone over slow and un-
correlated amplitude fading are given by8

CRBSlow(θ) =
1

N

(

1

α

[

1

ρ
+

1

MNρ2

])

(23)

CRBUncor(θ) =
1

N

(

1

α

[

1

ρ
+

1

Mρ2

])

. (24)

Note that the bound (24) is the conventional stochas-
tic CRB for DOA alone of a single source derived
in [6] under the circular complex Gaussian distribu-
tion. From (23) and (24), we obtain

CRBUncor(θ) ≥ CRBSlow(θ) for all SNR

CRBUncor(θ) ≈ CRBSlow(θ)

≈ CRBDA
0 (θ) for high SNR(25)

CRBUncor(θ) ≈ N CRBSlow(θ)

≈
1

Nρ2
1

Mα
for low SNR (26)

8Here the superscriptsSlow andUncor of CRBSlow(ρ) and
CRBUncor(ρ) refer slow and uncorrelated channel fading respec-
tively.

6 CRB properties

This section presents properties of the boundCRB(θ)
which are directly derived from the results of the pre-
vious section. It shows how the CRB depends on the
key parameters such as SNR and channel parameter
γ.

Property 1 For high SNR, the CRBs for DOA alone
associated with fast, slow and uncorrected time-
variant channel amplitude are identical to the CRB for
DOA alone associated with time-invariant (constant)
amplitude, which is approximately inversely propor-
tional to SNR and does not depend on the parameter
of the channel.

Proof: The proof follows from Eqs. (21) and (25).
Note that for a given correlation model, the CRBs for
DOA alone associated with slowly, rapidly and uncor-
related time-variant amplitudes are identical for high
SNR accordingly to Eqs. (25) and (21).

Property 2 For low SNR, the CRBs for DOA alone
associated with fast, slow and uncorrected time-
variant channel amplitude are approximately in-
versely proportional toρ2 (decreasing rapidly with
SNR).

Proof: The proof follows from Eqs. (26) and (22).
Note that the parameterβ in (22) is a monotone de-
creasing function offdT as illustrated in Fig.1.
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N=100

N=200

Fig.1 The channel-dependent parameterβ for the AR(1) corre-
lation model versusfdT for different values ofN .

It can be seen from this figure thatβ decreases rapidly
except for slowly time-varying amplitudes (i.e.,γ ≈
1). As the CRB (22) approximately inversely propor-
tional toβ, we obtain the following property

Property 3 For low SNR, the CRB for DOA alone
associated with the fast amplitude fading process is
a monotonically decreasing function of the channel
correlation parameterγ which varies from uncorre-
lated fading bound (γ = 0) to the slow fading bound
(γ = 1).
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7 Simulation results

The purpose of this section is to illustrate the behav-
ior of the derived CRB for DOA alone and the perfor-
mance of the derived estimator.

Assume that a single narrowband source signal
impinges on a uniform linear array (ULA) ofM = 6
sensors separated by a half-wavelength for whicha =
(

1, eiθ, . . . , ei(M−1)θ
)

, whereθ = π sinα, with α be-
ing the DOA relative to the normal of array broadside.
The channel is simulated according to a AR(1) cor-
relation model [20, 21, 23] with doppler-time product
of fdT . In our simulations, 1000 Monte Carlo sim-
ulations were run to estimate the mean-square error
(MSE) of the estimates.

We begin with Fig.2, which compares
CRBSlow(θ) (23), CRBUncor(θ) (24) and the
exact CRB (20) versus SNR for two values of
fdT . It can be seen from this figure that all
these bounds are identical except for low SNR
where the fast amplitude fading bound decreasing
from the CRB for uncorrelated amplitude fading
(i.e.,γ = 1) to the CRB for slow amplitude fading
(i.e.,γ = 0) as predicted by the Properties 1 and 3.
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CRB with uncorrelated amplitude fading (γ=0)

CRB with slow amplitude fading  (γ=1)
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Fig.2 Exact CRB on DOA estimation with time-variant
amplitude fading for two values offdT , CRBSlow(θ) and
CRBUncor(θ) versus SNR withN = 200.
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Fig.3 Exact CRB and its approximations versus SNR for three
values offdT with N = 200.

Fig.3 exhibits the domain of validity of the low
and high-SNR approximations of the CRB given by
Eqs. (22) and (21), respectively. It can be seen that
the domain of validity depends on the values offdT ,
where for low SNR the exact CRB equals to its low
approximation bound for a large SNR range except for

small values offdT (i.e., for slowly time-varying am-
plitude fading). At higher SNR, however, the approx-
imate CRB does not depend onfdT which is identical
to its exact bound for large SNR range as predicted by
Property 1.

Fig.4 presents the dependence of the CRB for
DOA alone on the time-variant AR(1) correlation
model for low SNR throughout the Doppler-time
productfdT for different values ofN . We observe
from this figure that as the Doppler-time product
fdT increases, the CRBs remain quite constant up
to Doppler-time product value of0.0035, for which
these bounds are identical to the CRB associated to the
slow amplitude fading. We also see that the bounds
increase when the time-Doppler product increases as
predicted by Property 3.
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Fig.4 ExactCRB(θ) for the time-varying AR(1) correlation
model andCRBSlow(θ) versusfdT with SNR= −15dB.

Fig.5 illustrates the Result 1 by comparing the
exact CRB (20) and the minimum mean square er-
ror (MSE) of DOA estimate given by the asymptotic
high-SNR ML estimator for the time-variant ampli-
tude fading versus SNR. From this figure, we observe
a good agreement between the derived CRB and the
estimated MSE for high SNR. On the other hand, the
asymptotic ML estimator still gives a valid estimate
of DOA parameter for small values ofN and for low
SNR values.
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fast−fading channel model (N=50)
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Fig.5 ExactCRB(θ) for the time-varying AR(1) correlation
model and estimated MSEE(θ̂ML − θ)2 given by the ML esti-
mator versus SNR for two values ofN with fdT = 0.01.

In addition to the properties derived in section
6, Fig.6 presents the behavior of the CRB versus the
number of observationN . It is seen that the CRB de-
creases asN increases. Observe that the MSE per-
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formance of the estimate reaches the CRB for a large
range of SNR. This figure shows also that the derived
high-SNR ML estimator continues to provide a good
estimate for low SNR.
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Fig.6 ExactCRB(θ) for the time-varying AR(1) correlation
model and estimated MSEE(θ̂ML − θ)2 given by the ML esti-
mator versusN for two values ofSNR with fdT = 0.1.

8 Conclusion

This paper studies the direction-of-arrival (DOA) es-
timation problem of a single narrow-band source dis-
torted by a time-varying complex AR(1) channel am-
plitude. A high signal-to-noise-ratio maximum like-
lihood (ML) estimator is proposed to simultaneously
estimate the DOA parameter and the unknown param-
eters of the AR(1) amplitude model. The estimator
is compressed into a single-parameter search over the
DOA parameter alone. Closed-form expressions of
the DA CRB for the DOA parameter alone are derived
for fast and slow time-varying channel, respectively.
As a special case, the CRB under uncorrelated time-
varying channel is also derived. Approximate analyt-
ical expressions for the CRB of the DOA alone over
low and high SNR are derived. Some properties that
highlight how the bound depends on key parameters
such as SNR and time-Doppler product are proved.
These properties show that the CRB for DOA alone
is insensitive to the channel-dependent time-Doppler
product for high SNR. Numerical simulation shows
that the proposed estimator reaches the CRB for a
large range of SNR.

A Proof of Eq. (11)

Under the AR(1) channel amplitude model (3), the
M × 1 array observation vector is described by the
following state-space equations:

y(n) = h(n)a(θ) + n(n), (27)

h(n) = γh(n− 1) +
√

1− γ2e(n),

wheree(n) ∼ N (0, σ2
h). Insertingh(n) in (27), we

get
y(n) = γh(n − 1)a(θ)+

√

1− γ2a(θ)e(n)+n(n)

= γy(n− 1) +
√

1− γ2a(θ)e(n) + n(n)

− γn(n− 1), (28)

where we have usedh(n − 1)a(θ) = y(n − 1) −
n(n− 1). It is clear from (28) that the dependence of

y(n) on its historyy(n) =
(

y(0)T , . . . ,y(n − 1)T
)T

for the AR(1) model, is limited to dependence on the
previous sampley(n − 1) alone

p(y(n)|y(n);α) = p(y(n)|y(n − 1);α), (29)

By definition, the normal vectorsn(n) and
e(n) are independent of y(n − 1), and
p(y(n − 1)|y(n − 1);α) is a constant. Hence,
from (28), to derive the conditional distribution
p(y(n)|y(n − 1);α), we only need to derive the
conditional distribution p(n(n − 1)|y(n − 1);α).
Let vy be a complex vector defined as

vy
def
=
(

y(n)T ,n(n)T
)T

. (30)

Clearly, vy is zero-mean complex Gaussian vector
with covariance matrix given by

Cv
def
= E(vyv

H
y ) =

(

Cy σ2
nI

σ2
nI σ2

nI

)

,

whereCy
def
= σ2

ha(θ)a
H(θ)+σ2

nI. Applying the well
known Bayes rule equality, the conditional distribu-
tion p(n(n)|y(n);α) can be obtained as

p(n(n)|y(n);α) =
p(n(n),y(n);α)

p(y(n);α)
, (31)

where

p(y(n);α) =
1

πM det(Cy)
e−y(n)HC

−1
y y(n)

p(n(n),y(n);α) =
1

π2M det(Cv)
e−vH

y C
−1
v vy .

Thus,

p(n(n)|y(n);α) = (32)
1

πM det(C−1
y ) det(Cv)

e−(vH
y C−1

v vy−y(n)HC−1
y y(n)).

Using matrix inversion lemma [27], the inverse of the
matrixCv can be expressed as

C−1
v =

(

I O

−I I

)(

(Cy − σ2
nI)

−1 O

O σ−2
n I

)(

I −I

O I

)

.

(33)
Using (33) and (30), and after some mathematical ma-
nipulations, we obtain

vH
y C−1

v vy − y(n)
H
C−1

y y(n)=(n(n) − σ2
nC

−1
y y(n))HB−1(n(n)

− σ2
nC

−1
y y(n)) (34)

det(C−1
y ) det(Cv) = det(B), (35)
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whereB
def
= σ2

n(Cy − σ2
nI)C

−1
y . Thus,n(n)|y(n) is

a complex Gaussian vector with pdf given by

p(n(n)|y(n);α) =
1

πM det(B)
e−ny(n)HB−1ny(n).

(36)

whereny(n)
def
= n(n) − σ2

nC
−1
y y(n). Therefore, the

conditional distribution ofy(n)|y(n − 1) is Gaussian
and according to (28) its mean and covariance matrix
are given by

E(y(n)|y(n − 1)) = γy(n − 1)

− γE(n(n− 1)|y(n − 1))

= γσ2
hC

−1
y aaHy(n − 1) (37)

=
γσ2

h

Mσ2
h + σ2

n

a(θ)aH(θ)y(n − 1),

Cov(y(n)|y(n − 1)) = E(y(n)y(n)H |y(n − 1))

− E(y(n)|y(n − 1)) (38)

(E(y(n)|y(n − 1)))H .

To derive the covariance matrix (38), we begin
with

E(y(n)y(n)H |y(n − 1)) = E ((γy(n − 1)

+
√

(1− γ2)a(θ)e(n) + n(n)− γn(n − 1)
)

(

γy(n − 1) +
√

(1− γ2)a(θ)e(n) + n(n)

− γn(n− 1))H |y(n − 1)
)

. (39)

Note thatn(n) is independent ofy(n − 1), and there-
fore, also ofn(n)|y(n − 1). We also note thate(n) is
independent ofn(n − 1), n(n) andy(n − 1), hence,
all the cross terms in (39) except those that involve
bothn(n − 1) andy(n − 1) vanish.

After some lengthy but straightforward algebraic
manipulations, we obtain

E(y(n)y(n)
H |y(n− 1)) = γ2y(n− 1)y(n− 1)

H

− γ2y(n − 1)E(n(n− 1)
H |y(n− 1))

− γ2E(n(n− 1)|y(n− 1))y(n− 1)H

+ γ2E(n(n− 1)n(n− 1)
H |y(n− 1))

+ (1− γ2)aaHE(|e(n)|2) + E(n(n)n(n)H)

= γ2y(n − 1)y(n− 1)
H − γ2σ2

ny(n− 1)y(n− 1)
H
C−1

y

− γ2σ2
nC

−1
y y(n− 1)y(n − 1)

H

+ γ2B+ γ2σ4
nC

−1
y y(n − 1)y(n− 1)

H
C−1

y

+ σ2
h(1− γ2)aaH + σ2

nI

= γ2σ4
h(y(n− 1)

H
C−1

y a)C−1
y aaHy(n− 1)aH

+ γ2B+ σ2
h(1 − γ2)aaH + σ2

nI. (40)

Therefore, using (40) and (37) the conditional covari-
ance matrix can be expressed as

C
def
= Cov(y(n)|y(n − 1))

= E(y(n)y(n)H |y(n − 1))

− E(y(n)|y(n − 1))(E(y(n)|y(n − 1)))H

= γ2B+ σ2
h(1− γ2)aaH + σ2

nI

= −γ2σ4
h‖a‖

2C−1
y aaH +Cy

= σ2
h

(

1−
γ2Mσ2

h

Mσ2
h + σ2

n

)

a(θ)aH(θ) + σ2
nI.

Hence, the pdf ofy can be expressed as

p(y;α) = p(y(0);α)
N−1
∏

n=1

p(y(n)|y(n − 1);α),

where

p(y(0);α) =
1

πM det(Cy)
e−y(0)HC

−1
y y(0)

p(y(n)|y(n − 1);α) =
1

πM det(C)
e−ȳ(n)HC−1ȳ(n)

and ȳ(n)
def
= y(n) −

γσ2
h

Mσ2
h+σ2

n
a(θ)aH(θ)y(n − 1).

Therefore, the negative log-pdf can be expressed as
(after dropping the constant term)

L(αn, θ;y)=ln((det(Cy))
N (det(C̄))N−1) (41)

+y(0)HC−1
y y(0) +

N−1
∑

n=1

ȳ(n)HC−1ȳ(n),

whereC̄
def
= I −

γ2Mσ4
h

Mσ2
h+σ2

n
C−1

y a(θ)aH(θ). The ma-

trix C−1
y , det(Cy) anddet(C̄) can be written, using

matrix determinant and inversion lemmas, as

C−1
y =

1

σ2
n

I−
1

Mσ2
n(1 +

σ2
n

Mσ2
h
)
aaH , (42)

det(Cy) = det(σ2
haa

H + σ2
nI)

= Mσ2(M−1)
n σ2

h(1 +
σ2
n

Mσ2
h

),

det(C̄) = 1− γ2
1

(1 + σ2
n

Mσ2
h
)2
.

Hence, the first term in (41) can be simplified as

ln((det(Cy))
N (det(C̄))N−1) = N ln(M)

+ N ln(σ2(M−1)
n σ2

h) +N ln(1 +
σ2
n

Mσ2
h

)

+ (N − 1) ln(1− γ2
1

(1 + σ2
n

Mσ2
h
)2
).

Consequently, (11) is proved.
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B Proof of Result 1

Equating to zero the first derivative ofL′(.) in (12)
with respect toσ2

n, σ2
h and γ, we get the following

high-SNR ML equations

∂L′(α;y)

∂σ2
n

=
N(M − 1)

σ2
n

−
1

σ4
n

y(0)HΠ⊥
a(θ)y(0)

−
1

σ4
n

N−1
∑

n=1

ỹ(n)HΠ⊥
a(θ)ỹ(n) = 0, (43)

∂L′(α;y)

∂σ2
h

=
N

σ2
h

−
1

M2σ4
h

y(0)Ha(θ)aH(θ)y(0)

−
1

M2σ4
h(1− γ2)

N−1
∑

k=1

ỹ(n)Ha(θ).

aH(θ)ỹ(n) = 0 (44)

∂L′(α;y)

∂γ
= −

2(N − 1)γ

1− γ2

+

N−1
∑

k=1

{−
1

M
y(n− 1)Ha(θ)aH(θ)C̃ỹ(n)

−
1

M
ỹH
n C̃a(θ)aH(θ)y(n − 1) (45)

+
2γ

M(1− γ2)2σ2
h

ỹ(n)Ha(θ)aH(θ)ỹ(n)} = 0.

Solving (43) w.r.tσ2
n, we obtain the ML estimate of

σ2
n expressed as function ofθ andy as

σ̂2
n,ML =

1

N(M − 1)

N−1
∑

k=0

y(n)HΠ⊥
a(θ)y(n). (46)

Next, solving (43) w.r.tσ2
h, we obtain the following

ML estimate ofσ2
h that depends onθ, γ andy

σ̂2
h,ML =

1

N

(

k3,y(θ) +
1

1− γ2
(−γk2,y(θ)

+ γ2MLk1,y(θ)
))

. (47)

Collecting the coefficients for each order ofγ, the ML
estimate ofγ is given as the solution of the following
third-order polynomial:

2(N − 1)σ2
hγ

3 − k2,y(θ)γ
2 + (2k1,y(θ)

− 2(N − 1)σ2
h)γ − k2,y(θ) = 0, (48)

which depends onθ, σ2
h andy. Substitutingσ̂2

h,ML
given by (47) into (48), we obtain after some easy ma-
nipulations the following ML equation inγ

P (γ)
def
= 2k4,y(θ)γ

5 + k2,y(θ)γ
4 − 4k4,y(θ)γ

3

− 2k2,y(θ)γ
2 + 2k4,y(θ)γ + k2,y(θ) = 0.

Fortunately, this polynomial can be factored as

P (γ) = (2k4,y(θ)γ + k2,y(θ))(γ
2 − 1)2 = 0.

Consequently, the ML estimate ofγ is given by

γ̂ML = −
k2,y(θ)

2k4,y(θ)
.

Substituting this solution into (47), we find the ML
estimate ofσ2

h given by (15).

C Proof of Result 2

To compute the elements of the FIM given by (19),
we need the following partial derivatives of the co-
variance matrixRy with respect to the unknown pa-
rameters.

∂Ry

∂θ
= DRhA

H +ARhD
H (49)

∂Ry

∂σ2
n

= I (50)

∂Ry

∂σ2
h

=
1

σ2
h

ARhA
H (51)

∂Ry

∂γ
= AR

(γ)
h AH , (52)

whereR(γ)
h

def
= ∂Rh

∂γ
, D

def
= ∂A

∂θ
= I ⊗ a′, and where

a′
def
= ∂a

∂θ
.

Now, we propose to show that the DOA parameter
is decoupled from the other parameters in FIM (i.e.,
(Iα)θ,σ2

h
= 0, (Iα)θ,σ2

n
= 0 and(Iα)θ,γ = 0).

Let us definẽZ
def
= (MRh + σ2

nI)
−1. Applying

the well-known matrix inversion lemma (e.g., [27]),
we get

R−1
y =

1

σ2
n

(I−ARhZ̃A
H), (53)

and hence, we obtain the following equalities

R−1
y A = AZ̃, (54)

AHR−1
y A = M Z̃. (55)

Using (49) and (50), we obtain

(Iα)θ,σ2
h

= Tr

(

∂Ry

∂θ
R−1

y

∂Ry

∂σ2
h

R−1
y

)

=
1

σ2
h

(

Tr(DRhA
HR−1

y ARhA
HR−1

y )

+ Tr(RhD
HR−1

y ARhA
HR−1

y A)
)

=
M

σ2
h

(

Tr(RhZ̃RhZ̃A
HD)

+ Tr(Z̃RhZ̃RhD
HA)

)

, (56)
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where we have used (54) and (55) andAHA = MI.
To simplify the calculation, we need the following
property that can be proved thanks to the properties
of the trace operator (e.g., [27]).
Lemma 1:Let E andF be two symmetric matrices,
andG be a diagonal matrix. Then,

Tr(EFG) = Tr((FE)TG) = Tr(FEGT )

= Tr(FEG).

Note thatRhZ̃Rh is a symmetric matrix because
Rh and Z̃ are symmetric matrices. By applying
lemma 1 to the first term of (56) (withE = RhZ̃Rh,
F = Z̃, andG = AHD), (56) becomes

(Iα)θ,σ2
h

=
M

σ2
h

(

Tr
(

Z̃RhZ̃Rh

(

AHD

+ DHA
)))

= 0, (57)

where the last equality results from the key equality

dAHA

dθ
=

d(aHa)I

dθ
= AHD+DHA

= (aHa′ + a
′Ha)I = 0. (58)

Following the same steps, the term(Iα)θ,σ2
n

can be
simplified as

(Iα)θ,σ2
n
= Tr

(

∂Ry

∂θ
R−1

y

∂Ry

∂σ2
n

R−1
y

)

(59)

= Tr(RhZ̃
2AHD+ Z̃2RhD

HA)

= Tr(Z̃2Rh(A
HD+DHA)) = 0,

where we have used lemma 1 (withE = Rh, F = Z̃2

andG = AHD) and (58).
After some easy manipulations similar to (57) and

(59), the term(Iα)θ,γ can be simplified as

(Iα)θ,γ=Tr

(

∂Ry

∂θ
R−1

y

∂Ry

∂γ
R−1

y

)

(60)

=MTr(RhZ̃R
(γ)
h Z̃AHD

+ Z̃R
(γ)
h Z̃RhD

HA).

By applying lemma 1 (withE = Rh, F = Z̃2 and
G = AHD) and (58), we get

(Iα)θ,γ = Tr(RhZ̃R
(γ)
h Z̃(AHD+DHA)) = 0.

(61)
From (57), (59) and (61), the FIM can be written as

FIM =

(

(Iα)θ,θ 0T

0 X

)

,

whereX is the FIM block that corresponds to the pa-
rameters(σ2

h, γ, σ
2
n)

T .
Hence, we conclude that the DOA parameter is

decoupled from the other parameters in FIM, and
therefore the CRB for DOA parameter,θ, is given

CRB(θ) = (Iα)
−1
θ,θ. (62)

Now, we propose to compute the term(Iα)θ,θ. Af-
ter some easy manipulations similar to (57), (59) and
(61), we get

(Iα)θ,θ = Tr

(

∂Ry

∂θ
R−1

y

∂Ry

∂θ
R−1

y

)

(63)

= Tr
((

(aHa′)2Z̃+M(DHR−1
y D)

)

(RhZ̃Rh)
)

,

where we have used (49), (54) and (55), and the fact
thatAHD = (aHa′)I.

Using (53) and after straightforward algebra ma-
nipulations, the first term in (63) can be simplified as

2((aHd′)2Z̃+M(DHR−1
z D)) =

Mα

σ2
n

.

Therefore,

(Iα)θ,θ =
Mα

σ2
n

Tr(RhZ̃Rh).

From this last equality and (62), we obtain (20).
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